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Abstract

Recent approaches to geo-referencing X posts have focused on the use of language mod-
elling techniques that learn geographic region-specific language and use this to infer
geographic coordinates from text. These approaches rely on large amounts of labelled
data to build accurate predictive models. However, obtaining significant volumes of
geo-referenced data from Twitter, recently renamed X, can be difficult. Further, existing
language modelling approaches can require the division of a given area into a grid or
set of clusters, which can be dataset-specific and challenging for location prediction at a
fine-grained level. Regression-based approaches in combination with deep learning ad-
dress some of these challenges as they can assign coordinates directly without the need for
clustering or grid-based methods. However, such approaches have received only limited at-
tention for the geo-referencing task. In this paper, we adapt state-of-the-art neural network
models for the regression task, focusing on geo-referencing wildlife Tweets where there is
a limited amount of data. We experiment with different transfer learning techniques for
improving the performance of the regression models, and we also compare our approach
to recently developed Large Language Models and prompting techniques. We show that
using a location names extraction method in combination with regression-based disam-
biguation, and purely regression when names are absent, leads to significant improvements
in locational accuracy over using only regression.

Keywords: regression; neural networks; social networks; geo-referencing; geo-coding;
wildlife; ecology

1. Introduction
Social media platforms offer a rich source of information for diverse applications,

including health, disaster response, marketing, and environmental monitoring [1–3]. Geo-
referenced microblogs are particularly valuable in ecology, where they support research on
wildlife distribution, climate change, disease spread, and invasive species [4,5]. Despite
recent restrictions following Twitter’s transition to X, historical Twitter data remains a key
resource—especially given its global reach, real-time nature, and relevance to event-based
and spatially grounded phenomena. The increasing difficulty of collecting new data under
current platform constraints further heightens the value of existing collections. Moreover,
methods developed on Twitter data can generalise to similar platforms such as Mastodon
and Bluesky.

However, most Twitter/X posts lack explicit geo-coordinates [1,6,7]. This presents
challenges, particularly for domain-specific queries such as locating wildlife observations
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within specific regions. As a result, geo-referencing—inferring coordinates from post
content—has become an important research task [3,8,9].

Early methods rely on gazetteers to detect and disambiguate place names [10–12]
but suffer when toponyms are ambiguous or absent [3].

More recent work uses language models to exploit broader linguistic cues, di-
viding training data into spatial regions and learning region-specific language pat-
terns [9,13]. These methods often require large labelled datasets and careful region
granularity tuning [14].

While many approaches focus on predicting user-level locations using Tweet text,
metadata, and network structure [15–17], fewer address the finer-grained task of pre-
dicting coordinates for individual posts. Regression-based models, particularly those
using transformer architectures, offer an alternative by directly predicting latitude and
longitude without partitioning space into discrete regions [18,19]. These models avoid
grid-size tuning and can operate more flexibly, but their application in geospatial contexts
remains underexplored.

Transfer learning offers a promising solution to the challenge of limited labelled data.
Prior work has shown that models trained on one platform (e.g., Flickr) can improve geo-
inference on another (e.g., Twitter/X) [20]. However, most studies use classical machine
learning approaches rather than transformer-based models. Likewise, hybrid methods
combining language models with gazetteers have proven effective in toponym disambigua-
tion [21], but their integration with regression-based models has not been investigated.

Our work addresses these gaps by adapting transformer models for coordinate regres-
sion and enhancing them using domain-specific training, transfer learning, and hybrid
disambiguation strategies. We focus on geo-referencing wildlife-related Tweets, a domain
that presents unique linguistic challenges and offers high ecological value. We also conduct
comparative evaluations with large language models (LLMs) and graph-based baselines to
provide a comprehensive view of the trade-offs among existing methods.

1.1. Machine Learning Approaches
1.1.1. Statistical Machine Learning

Traditional machine learning models such as Support Vector Machines (SVM) and Sup-
port Vector Regression (SVR) have been widely used for text classification and spatial predic-
tion tasks, including coordinate estimation [18,22,23]. These models typically rely on word
frequency-based feature vectors and perform well in structured settings. However, they
are limited in handling out-of-vocabulary (OOV) words and can struggle with fine-grained
multi-class problems due to their reliance on sparse, context-independent representations.

1.1.2. Neural Network and Transformer-Based Models

Neural networks, particularly those using word embeddings, address some of these
limitations by capturing semantic relationships and contextual meaning. Transformer-
based models, such as BERT [24] and its improved variant RoBERTa [25], use attention
mechanisms to model word context more effectively. These models are pre-trained on large
unlabelled corpora and then fine-tuned for specific tasks, enabling strong performance
even with limited labelled data. In this work, we adopt RoBERTa in regression mode due
to its consistent performance gains over BERT in downstream NLP tasks.

1.1.3. Generative Language Models

Large generative models such as GPT [26] and LLaMA [27] have introduced in-context
learning, enabling them to perform tasks with minimal or no additional training by inter-
preting plain-language instructions or few-shot examples [28,29]. While promising, these
models are rarely evaluated in ecology-focused applications or geospatial tasks. Despite the
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advances in transformer-based models, their application to geo-referencing social media—
especially wildlife-related posts—remains limited. Our work explores this under-studied
area by applying domain-adapted transformer models and transfer learning strategies to
improve coordinate prediction.

1.2. Related Work: Geo-Referencing Social Media Data

Much of the existing research on geo-referencing social media focuses on predicting
user locations rather than the locations of individual posts. These approaches often integrate
Tweet content, metadata, and user networks [15,17,30]. For instance, Rahimi et al. [15]
proposed a Graph Convolutional Network (GCN) model combining textual and network
features for user geolocation. While effective, these methods typically aggregate multiple
Tweets per user and are thus less suited to inferring the location of individual posts—
especially those tied to specific events or observations.

Language modelling is a dominant approach for post-level geo-referencing, where
spatially labelled data is divided into regions such as grid cells or clusters [1,13,31,32].
Models then learn regional language profiles to predict the most likely region for a given
post [33,34]. Variants include fixed or adaptive grid systems [35,36] and region-based
classification [37,38]. However, these methods require large labelled datasets, particularly
for fine-grained predictions, and performance is sensitive to the region partitioning [14].

Some models incorporate gazetteers to match and disambiguate place names [3],
but these rely on the presence of explicit toponyms, limiting their applicability. For ex-
ample, Sherloc [1] uses an embedding space built from gazetteers to infer locations
but fails when toponyms are missing or a reference area is not predefined. Similarly,
Masis and O’Connor [39] match user-entered location strings to GeoNames embeddings,
though their method targets user location and omits Tweet content.

Transfer learning approaches address data scarcity by leveraging cross-platform
datasets. Van Laere et al. [20] showed that Flickr and Twitter data could be used to improve
geo-referencing of Wikipedia articles. However, their models used traditional machine
learning and required extensive feature engineering. Our work extends this idea by apply-
ing transfer learning to transformer-based models using Flickr data to improve Twitter/X
post-level geo-inference.

Toponym disambiguation has also been explored using neural models. For example,
LGGeoCoder [40] and CamCoder [41] use CNNs and embeddings to resolve place names
in long texts. Other work combines ELMo or LSTM embeddings [42,43] or character-level
n-grams [44] to distinguish regional naming patterns. However, these models are designed
for longer documents and are less applicable to short, noisy Tweets.

Transformer models such as BERT have recently been applied to Twitter/X clas-
sification tasks [45,46], but few studies have adapted them for coordinate regression.
Scherrer et al. [18,19] were among the first to use BERT for predicting coordinates directly,
showing that regression models can outperform classification-based methods, particu-
larly on small datasets. Our work builds on this by comparing regression-based models
(BERT and RoBERTa) and demonstrating the superior performance of RoBERTa in our
wildlife domain.

Further, Born and Manica [47] found BERT-based regressors outperform XLNet and
traditional regressors (e.g., Random Forest, XGBoost). However, these models were not
tailored for domain-specific content or augmented through transfer learning.

Other studies [48,49] use transformers for geolocation but treat it as a classification task
tied to pre-defined locations, such as points of interest or user home locations—assumptions
that do not hold in our wildlife domain.
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Recently, prompting-based approaches using large language models (LLMs) such as
GPT have shown promise in spatial reasoning [50,51]. However, they lack systematic com-
parison with transformer regression baselines, and most assume that sufficient location cues
are present in the text. Reviews such as Tucker [52] also overlook detailed benchmarking
across traditional and modern approaches.

In summary, there is a lack of prior work that (i) applies transformer models directly
for coordinate regression in geo-referencing tasks; (ii) explores transfer learning using
domain-relevant data sources such as Flickr; and (iii) integrates regression models with
gazetteer-based disambiguation to improve precision.

We address these gaps through the following contributions:

• We fine-tune a transformer-based model (RoBERTa) for multivariate coordinate regres-
sion on wildlife-related Twitter/X posts, outperforming traditional statistical regressors.

• We demonstrate that domain-specific training on wildlife Tweets yields better geo-
referencing performance than general-purpose models, including generative LLMs.

• We introduce a transfer learning approach that augments training data with geo-tagged
Flickr posts, enhancing model accuracy under limited Twitter/X data availability.

• We propose a hybrid strategy that combines the regression model with toponym
disambiguation, improving precision when place names are present.

• We release what we believe to be the largest geo-referenced dataset of wildlife-related
Tweets—a valuable resource for ecological and geospatial research.

• We evaluate our approach against strong baselines, including a second hybrid ap-
proach that combines the regression model with semantic similarity; generative LLMs
with prompting; BERT-based regression models; and GCN-based user location models.

2. Materials and Methods
This section outlines our methodology for geo-referencing wildlife-related social me-

dia posts in the UK by predicting geographic coordinates from Tweet text. Building on
the BERT-based regression approach introduced by Scherrer et al. [19], we enhance per-
formance through three key innovations. First, we adopt the more advanced RoBERTa
model [25], which offers improved language understanding and representation. Sec-
ond, we incorporate domain adaptation and transfer learning techniques, inspired by
Van Laere et al. [20], by leveraging data from other social media platforms to better align
our models with the target domain of Twitter posts. Third, we integrate traditional place
name disambiguation strategies—based on gazetteers and semantic similarity measures—
with our transformer-based regression models, extending prior work on location resolution
in textual data [3,21,39]. We evaluate our approach against a range of baselines, including
statistical machine learning models, neural networks, and generative language models. Our
methodology comprises three main components: (1) pre-training and fine-tuning of language
models (Section 2.2); (2) coordinate prediction using regression (Section 2.3); and (3) hybrid
improvements via place name resolution and semantic similarity (Sections 2.4 and 2.5).

2.1. Problem Formulation

Given a Tweet T, our objective is to predict a pair of coordinates (lat, lon) ∈ R2 corre-
sponding to the location of the wildlife-related observation described in the Tweet. Unlike
classification-based approaches that map inputs to predefined regions or grids [53,54],
we adopt a regression-based method to directly predict continuous-valued geographic
coordinates. Further, we investigate the effectiveness of improving the accuracy of the
result by using the regression coordinates to disambiguate and geocode place names, where
present in T, the coordinates of which are then substituted as the prediction.



ISPRS Int. J. Geo-Inf. 2025, 14, 321 5 of 21

2.2. Language Model Pre-Training

We adopt the RoBERTa architecture [25], leveraging its strong contextual representa-
tion capabilities. RoBERTa model has a similar architecture to BERT (see Section 1.1.2) which
makes it well-suited for tasks involving the prediction of token-level information. However,
RoBERTa improves upon BERT by being trained on a significantly larger corpus and using
longer input sequences, enabling it to capture broader contextual dependencies and achieve
stronger performance across various prediction tasks. We use two model variants:

• Generic RoBERTa: Pre-trained on large-scale general English corpora.
• Domain-specific RoBERTa: We have fine-tuned the base RoBERTa model to our do-

main, i.e., wildlife Tweets. For these purposes, we used the wildlife-related Tweets,
described in Section 2.6, that are not associated with coordinates. We used the masked
language modelling technique to fine-tune RoBERTa, in which the model is trained
to predict a subset of words that have been masked out [25]. This technique enables
learning more contextually rich sentence representations, compared to earlier neural
network models (see Section 1.1.2). It may be noted that the MLM technique is used
for pre-training the base RobERTa model. The model was fine-tuned here for three
epochs using the Hugging Face library [55] implementation for MLM.

2.3. Coordinate Prediction via Regression

We fine-tune RoBERTa to jointly predict latitude and longitude as a multivariate regres-
sion task. Given an input Tweet x, the model outputs a coordinate vector ŷ = (ŷlat, ŷlon),
where ŷlat and ŷlon are the predicted latitude and longitude, respectively. The model is
trained using the Mean Squared Error (MSE) loss, consistent with [19]:

LMSE =
1
N

N

∑
i=1

∥∥∥ŷ(i) − y(i)
∥∥∥2

=
1
N

N

∑
i=1

[
(ŷ(i)lat − y(i)lat)

2 + (ŷ(i)lon − y(i)lon)
2
]

(1)

where N is the number of training examples, ŷ(i) is the predicted coordinate vector, and y(i)

is the ground-truth coordinate vector for the i-th Tweet. This loss encourages the model to
minimize the squared Euclidean distance between predicted and actual coordinates.

Figure 1 shows an overview of the regression-based method for coordinate prediction.

Figure 1. Regression-based approach for coordinate prediction.

Coordinate Normalization

Accurate coordinate prediction with neural models requires effective handling of geo-
graphic label distributions, which are often uneven and skewed. Without normalization,
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neural networks tend to perform poorly on such data [18]. To mitigate this, we apply
the coordinate normalization method proposed by Scherrer et al. [18], which improves
regression performance on spatial data. Specifically, we normalize the latitude and lon-
gitude values by (1) Subtracting the mean of each coordinate dimension (latitude and
longitude); (2) Applying joint scaling using the standard deviation computed over both
dimensions combined.

Joint standardization helps maintain the relative scale and avoids introducing dis-
tortions that can result from normalizing each axis independently. This strategy has
been shown to yield stable convergence and improved accuracy in coordinate prediction
models [18]. Although the original work applied this method to BERT, we adopt the same
procedure for RoBERTa, given their architectural similarities and shared regression interface.

2.4. Hybrid Enhancement I: Location Name Resolution

This hybrid approach combines NER-based location name detection and geocoding
with the RoBERTa regression model (see Figure 2). The location names approach detects the
presence of place names within the Tweets with NER, before mapping them to coordinates
with a gazetteer. If the detected place name is ambiguous, and hence has more than one
candidate location, disambiguation is performed by selecting the candidate closest to the
coordinates returned by the RoBERTa regression method. When no place names are found
in a Tweet, we use the RoBERTa regression model coordinates. However, our work is the
first to incorporate recent neural network models for coordinates prediction and more
traditional dictionary-based methods for performing location disambiguation.

Figure 2. Hybrid enhancement I: location name resolution.

2.4.1. NER-Based Location Detection

We identify location names within the Tweets using two named entity recognition
(NER) methods. An entity is regarded as a potential place name if it has one of the following
NER labels: ‘GPE’, ‘FAC’, ‘LOC’, or ‘ORG’. To improve the precision of the NER process,
we apply voting between the methods, where a place name is considered genuine if both
methods have identified it as a location using one of the above labels. Our first NER method
uses the spaCy library [56], which has been successfully used for NER for short texts in
previous research. We use a spaCy pre-trained transformer NER model, which is part
of the library. We also use the Flert NER model [57] trained on a large English language
corpus, available from https://huggingface.co/flair/ner-english-large (accessed on 13
May 2025). In an initial analysis, we experimented with the off-the-shelf Named Entity
Recognition (NER) model based on BERT [24], trained on the CoNLL-2003 English news

https://huggingface.co/flair/ner-english-large
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articles dataset [58] (BERT NER model available at: https://huggingface.co/dslim/bert-
base-NER, accessed on 13 May 2025). Our results showed that the latter model does not
perform well for the given dataset. A possible reason for this is that the model has been
adapted for NER with longer text sequences rather than social media posts.

2.4.2. Geocoding

We obtain the coordinates for each identified location name using the geocoding library
Nominatim (Nominatim: https://nominatim.org, accessed on 13 May 2025). Nominatim
uses OpenStreetMap data to find the coordinates for given location names.

2.4.3. Disambiguation

We perform location names disambiguation at two stages of the approach, also de-
scribed in Algorithm 1:

• If a Tweet contains more than one place name, we select the name that refers to the
fine-grained geographic object. We identify the fine-grained geographic location by
selecting the most specific and complete location string. Through initial analysis of
our dataset, we observed that finer-grained locations are often expressed as longer
phrases with multiple place names separated by commas, effectively representing a
more precise address—for example, “London, UK” rather than just “London” or “UK.”
Accordingly, we treat such multi-part location strings as the fine-grained geographic
reference. For instance, in the Tweet “Today’s photo of the day ‘Goldie’, Cold
Ashby, Northamptonshire #goldfinch...,” we select “Cold Ashby, Northamptonshire”
as the fine-grained location rather than just “Cold Ashby” or “Northamptonshire”
individually, as this combined name provides a more detailed and accurate geographic
reference. This approach helps improve location name extraction and disambiguation
by prioritizing the most specific location information available within the Tweet.

• If the selected place name is ambiguous, i.e., Nominatim returns multiple pairs of
coordinates for the given place name, we use the Tweet coordinates obtained with
the RoBERTa-based regression model to disambiguate the location. We calculate the
distance between each pair of coordinates returned by Nominatim and the coordinates
returned by the regression model. We then select the Nominatim-based coordinates
that are closest to the regression-based coordinates. The distance is calculated using
the Haversine formula.

• If a Tweet does not contain location names, then we use the coordinates returned by
the regression model.

Algorithm 1 Location Name Disambiguation Heuristic

Input: Tweet
Output: Tweet(lat,lon)
if Tweet.contains(loc_name) then

if multipleloca_name then
return finest grain loca_name

end if
if Nominatim returns multiple loc_name(lat, lon) then

if min((dist(loc_name(lat, lon), regression(lat, lon))) then
return loc_name(lat,lon)

end if
end if

else
return regression(lat, lon)

end if

https://huggingface.co/dslim/bert-base-NER
https://huggingface.co/dslim/bert-base-NER
https://nominatim.org
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2.5. Hybrid Enhancement II: Semantic Similarity Matching

Semantic similarity-based methods are commonly used in combination with language
modelling approaches in which having selected a predicted region, usually a grid cell or a
spatial cluster, the aim is to find the training media item in the target cell or cluster that is
most similar to the item to be georeferenced and use the coordinate of the training item as
the prediction. We adapt this approach by using radial distances from the regression pre-
diction coordinates to represent the predicted region. The steps of the approach, illustrated
in Figure 3, are as follows:

Figure 3. Hybrid enhancement II: semantic similarity matching.

• Region Restriction: For each unlabelled Tweet, we identify training samples within a
5 km, 10 km, or 20 km radius of the regression prediction. We selected these distances
to balance spatial precision with the availability of sufficient nearby training samples
for reliable semantic matching. These distances align with common geospatial scales
that effectively capture local context in social media geo-referencing.

• Semantic Matching: Using Sentence-BERT [59], we compute cosine similarity between
test and training samples. The SBERT model, trained using more than 1 billion training
instances, is available from the Hugging Face library at https://huggingface.co/
sentence-transformers/all-MiniLM-L6-v2 (date of access: 31 March 2023). Sentence-
BERT was chosen because its architecture is specifically designed to produce high-
quality sentence embeddings optimized for semantic similarity tasks, making it more
suitable than RoBERTa for this purpose. We also performed experiments with corpus-
trained embeddings obtained with the fastText architecture [60]. However, the latter
results were unsatisfactory.

• Coordinate Assignment: The coordinates of the most similar sample in the region
are assigned to the test Tweet.

• Optional Averaging: We average the coordinates obtained using the two methods,
i.e., regression and semantic similarity approach. We perform experiments with and
without this final step.

2.6. Dataset Description

We collected Twitter/X and Flickr datasets limited to UK boundaries and related to
wildlife observations. For these purposes, we used search phrases relevant to common and
scientific names of various species within the UK (see Appendix A). The Tweets, which
relate to the period 2007–2019, were gathered irrespective of whether they had geo-tags.

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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We retrieved the post, and any hashtags, mentions, and links for each Tweet. We
used the labelled instances (i.e., instances with coordinates) for training prediction models,
while the unlabelled instances (instances with no coordinates) were used to pre-train the
RoBERTa model (see Table 1).

We downloaded Flickr data using the Flickr API interface for the period 2007–2019.
We limited the search to geo-referenced Flickr posts because we use Flickr data only as
a supplement to the fine-tuning stage where labelled data is required. Additionally, we
downloaded only the text-related data (title, description, tags) with no exploitation of
associated images.

Table 1. Overview of the social media datasets: Average number of tokens per instance (Avg
Length); Number of instances with associated coordinates used for training prediction model (#In-
stances (labelled)); Number of instances used to train language model without associated coordinates
(#Instances (unlabelled)).

Twitter Dataset Flickr Dataset

#Instances (Labelled) #Instances (Unlabelled) Avg Length #Instances (Labelled) Avg Length

Train 118,786 1,582,928 - 14,658 -

Dev 13,199 19,063 - - -

Test 14,666 - - - -

Total 146,651 1,601,991 16 14,658 23

2.6.1. Training and Testing Data

Statistics about the datasets used for training language models and regression mod-
els are presented in Table 1, where the ‘labelled’ instances are instances associated with
coordinates and are used as a training set for the regression models, while the ‘unla-
belled’ instances are those used for pre-training the RoBERTa domain-specific language
model. For evaluation purposes, we used a train, development, test split of approximately
80/10/10 for the Twitter dataset. We have obtained in total 146,651 labelled wildlife-related
Tweets, which is, so far as we know, the largest collection of geo-referenced wildlife-related
Twitter data available.

2.7. Evaluation Metrics

We use standard evaluation measures employed in previous related research on
predicting coordinates for social media posts [2,61]. These are median error distance
(MedianED) and mean error distance (MeanED). The measures are expressed with respect
to the Distance Error DE(t). For a given Tweet t, at location locr(t), DE(t) corresponds to
either the Haversine distance (as used here) or Euclidean distance d between locr(t) and an
estimated location, loc(t): DE(m) = d(loc(t), locr(t)). The MeanED refers to the average
DE for each Tweet, while the MedianED is the median of DE for each Tweet.

2.8. Baseline Methods

We compare a regression model based on the RoBERTa language model with two other
regression models employed in previous research on geo-referencing social media data. These
are the Support Vector Regression (SVR) statistical machine learning algorithm and a BERT-
based regression model. Additionally, we compare our approach to the work by [15], which
has been shown to outperform a number of text -and network-based geolocation approaches
and to perform well for small training sets. Finally, we compare our method to recently
developed LLMs combined with prompting techniques. In summary, the baselines are

• Linear SVR: The SVR classifier is based on TF-IDF frequencies of character grams of
length 3–10.
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• BERT-based regression model: This is based on the work of [19] and uses a pre-
trained BERT language model, trained on the generic dataset and then adapted for the
regression task. This is the only work of which we are aware that uses transformer-
based models in regression mode for coordinate prediction.

• GCN baseline [15] (described in Section 1.2): To enable comparison, we prepossessed
our data to include the user network information. This consisted of retrieving addi-
tional metadata, specifically user mentions for the Tweets we present in Table 1.

• OpenAI GPT-4o model combined with zero- and five- shot prompting: The GPT-4o
model by OpenAI is among the most advanced in natural language processing and
is widely recognized for its strong performance in zero-shot and few-shot learning
scenarios [62,63]. We combine GPT-4o with prompting techniques using only an in-
struction describing the task (zero-shot) and also by providing five randomly selected
examples to the model along with the instruction (five-shot) (prompts available in
Appendix B).

• LLaMA 3 model [64] combined with zero- and five- shot prompting: The LLaMa 3
model is known to be one of the most advanced open source language models [64].
We use the LLaMA 3 model with 8 billion parameters, pre-trained with instructions,
downloaded from HuggingFace [55]. Similarly to the GPT-4o model, we perform
experiments in zero- and five-shot settings. We use the same instruction and examples
for both models (prompts available in Appendix B).

3. Results
3.1. Evaluation Experiments

We performed experiments with the RoBERTa model, pre-trained on a generic dataset,
and a RoBERTa model that has been fine-tuned to the Twitter/X domain using the Tweets
we have collected related to wildlife observations (see Table 1).

Currently, the RoBERTa architecture supports the regression task for single values using
the Mean Square Loss function. We adapt RoBERTa to multivariate regression (for both
latitude and longitude prediction), calculating the Mean Square Loss function per label, using
the Huggingface implementation of RoBERTa for multi-label classification. The latitude
and longitude values are predicted jointly. In order to train our regression model, we used
10 epochs, a batch size of 32 and we also saved only the model which performed the best for the
development set. We present two approaches for improving the accuracy of geo-referencing
models based on location name extraction and on semantic similarity between training and
unlabelled instances. The development (‘dev’) set is used for identifying and saving the
best-performing model, which is then used for assigning coordinates to the test instances.

3.2. Regression Results

Results from the performance of the regression models (see Table 2) show that the
BERT model has a significant advantage over traditional machine learning models for geo-
referencing social media content. Both the median and the mean error distances are much
lower even for the baseline BERT-based regression model when compared to the Linear SVR
model, with a margin exceeding 50 km on the test set (MedianED (BERT) = 94.90 km versus
MedianED (Linear SVR) = 156.54 km and the MeanED (BERT) = 121.37 km versus MeanED
(SVR) = 181.32 km). Notably, the BERT baseline also outperforms the GCN baseline for
both median and mean error distance. Further, the transformer-based regression models
perform very similarly for both the dev and test sets. Thus the models generalise well for
unseen datasets, while the performance of the Linear SVR model declines significantly on
the test set. For example, the best-performing Linear SVR shows a MedianED increase from
98.60 km on the dev set to 156.82 km on the test set, a difference of approximately 58 km.
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Table 2. Results from regression model performance: ‘generic’ refers to a pre-trained publicly
available language model trained using generic online datasets; ‘wildlife Tweets’ refers to a language
model fine-tuned to the domain (wildlife-related Tweets); ‘wildlife Tweets+combined training set’
refers to a regression model that is using a RoBERTa model, fine-tuned to the domain and a training
set, consisting of Twitter and Flickr data; ‘NER + RoBERTa-based regression (Hybrid I: Location Name
Resolution)’ refers to the hybrid approach consisting of location name extraction and regression;
‘semantic similarity + RoBERTa-based regression (Hybrid II: Semantic Similarity Matching)’ refers
to the hybrid approach consisting of semantic similarities and regression; ‘best single NER model’
refers to using a single best performing NER model (spaCy library) for location extraction as part of
the hybrid approach; ‘voting mechanism’ refers to the voting approach where we perform voting
between results obtained with both the spaCy NER library and Flert NER model. The best results are
denoted in bold.

Model Method
Dev Set Test Set

Unlocated (%)
MedianED MeanED MedianED MeanED

Linear SVR baseline TF-IDF 98.60 km 127.03 km 156.82 km 181.32 km 0.0

BERT baseline generic 93.63 km 119.34 km 94.90 km 121.37 km 0.0

GCN baseline – – – 97.00 km 126.00 km 0.0

LLaMA 3 zero shot – – 87.86 km 363.45 km 21.94

LLaMA 3 five shot – – 81.86 km 301.46 km 21.27

GPT-4o zero shot – – 62.93 km 244.826 km 0.46

GPT-4o five shot – – 51.03 km 164.90 km 0.83

RoBERTa

generic 38.30 km 102.09 km 40.96 km 101.35 km 0.0

wildlife Tweets 37.99 km 101.50 km 39.84 km 100.89 km 0.0

wildlife Tweets +
combined training set 36.81 km 101.05 km 38.04 km 100.44 km 0.0

semantic similarity +
RoBERTa-based regression
(Hybrid II: Semantic Similarity Matching)

5 km radial distance - - 38.24 km 100.36 km 0.0

10 km radial distance - - 38.16 km 100.17 km 0.0

20 km radial distance - - 38.78 km 100.26 km 0.0

NER + RoBERTa-based regression
(Hybrid I: Location Name Resolution)

best single NER model - - 36.68 km 98.91 km 0.0

voting mechanism - - 36.47 km 98.22 km 0.0

In contrast, the differences in the MedianED and MeanED values for the BERT and
RoBERTa models between the dev and test sets are less than 3 km, demonstrating more
stable performance. Table 2 further shows that the text generation models GPT-4o and
LLaMA 3 consistently outperform other baselines in terms of MedianED, indicating their
strong ability to infer locations in typical cases. However, their MeanED values are con-
siderably higher, suggesting occasional large errors. This is likely due to difficulties these
models face when tweets lack explicit location references, leading to inaccurate predictions.
An additional limitation of these models, as well as prompting-based approaches, is their
tendency to return a subset of tweets with invalid or missing coordinates (see Table 2,
column ‘Unlocated (%)’). Despite these challenges, performance improves when a small
number of illustrative examples are included in the prompt (i.e., the five-shot setting),
highlighting the models’ capacity to adapt quickly and generalize from limited data. How-
ever, the relatively small performance gap between the one-shot and five-shot settings,
particularly for LLaMA 3, suggests that the model already captures essential geospatial
cues from a single example and that additional examples may offer diminishing returns
unless they are closely aligned with the input Tweet’s context.

The results also demonstrate that using RoBERTa to build regression models for
geo-referencing Tweets is more beneficial than using BERT (see Table 2). Even when the
generic RoBERTa model is used, it still outperforms the BERT regression model where
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the MedianED and the MeanED are about 50 km and 20 km, respectively, lower for the
RoBERTa model than for BERT regression model. The reason for the better performance of
RoBERTa versus BERT is that the RoBERTa model has been trained using a much larger
training set than BERT. This indicates that using larger transformer models for regression,
even when trained on generic datasets, is highly beneficial for the performance of regression
models, particularly for sparse labelled data.

Fine-tuning a RoBERTa model on domain-specific data has resulted in additional
improvements compared to the pre-trained RoBERTa, with 1–2 kilometers decrease in
MedianED and MeanED (‘RoBERTa generic’ versus ‘RoBERTa wildlife Tweets’ in Ta-
ble 2). Notably, the best-performing regression model uses a RoBERTa model fine-tuned
to the domain and also a training set consisting of Twitter and Flickr posts, resulting in
MedianED = 38.04 km and MeanED = 100.44 km for the test set. This indicates that aug-
menting the training corpus with labelled instances from diverse social network sites can
be beneficial for building more accurate geo-referencing models for Twitter.

3.3. Analysis on Hybrid Approaches

As mentioned in Section 2, we developed two approaches for improving the regression
models for geo-referencing Tweets. The approach based on radial distances and semantic
similarity (described in Section 2.5) does lead to slightly lower MeanED values compared
to the best-performing regression model, when a 10 km radial distance is used (see Figure 4
and Table 2), although there is no improvement in MedianED. However, as illustrated
in Figure 5, the hybrid approach based on semantic similarity is notable for performing
particularly well at the highest locational accuracy band, where the error is less than 5 km,
especially when compared to the RoBERTa-based regression model.

Figure 4. The effect of the radial distances on the performance of the Semantic Similarity + RoBERTa-
based regression where the best performing RoBERTa-based regression model is used as a baseline.

In contrast, the hybrid location name extraction method that uses the RoBERTa re-
gression method for disambiguation (described in Section 2.4) leads to marked overall
improvement in performance relative to the best-performing RoBERTa-based regression
model, achieving MedianED = 36.68 km and MeanED = 98.91 km when a single NER model
is used for location name extraction. In this case, the spaCy NER model was used as it led
to better geo-referencing results than the Flert NER method when combined with RoBERTa-
based regression. Further, a voting procedure between the two location names extraction
methods, the spaCy NER library and Flert NER model, led to additional improvements,
with MedianED = 36.47 km and MeanED = 98.22 km. The error distribution results, pre-
sented in Figure 5, illustrate the fact that while the hybrid approach based on location name
extraction and regression increases the accuracy of geo-referencing models significantly
for all error distances up to 95 km, the improvement is most marked within distances of 5
km. These findings are also reflected in our accuracy-based analysis, presented in Figure 6.
Note that lower scores for MeanED and MedianED indicate better performance, whereas
higher scores for accuracy indicate improvement.

Additionally, a comparison between the NER voting-based approach (which uses a
gazetteer to obtain coordinates) and the RoBERTa-based regression model (see Table 3)
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showed that, for the subset of posts in which place names are detected, the NER/gazetteer
method using RoBERTa-based regression for location disambiguation (‘NER + regression-
based disambiguation’) outperforms the purely transformer-based regression models and
the pure location name extraction method (‘NER + Nominatim-based disambiguation’) for
geo-referencing social media posts, obtaining a median ED of 1.32 km. For this restricted
dataset, in which all Tweets contain a place name, a smaller MedianED of 0.86km can be
obtained by informing the Nominatum geocoder of the UK context (‘NER + Nominatim-
based disambiguation with UK context’), as opposed to letting the regression method
perform the disambiguation, though in this case the MeanED is still slightly inferior to using
regression-based disambiguation. Without such prior knowledge, however, the regression-
based disambiguation approach is clearly beneficial overall for geo-referencing Tweets. It
should also be stressed that using only the NER method with gazetteer coordinates has
a major limitation for datasets such as the one employed here as only about 5% of the
Tweets contain detectable place names (see Table 4). For the remaining 95% of the dataset,
the NER/gazetteer method fails entirely. Our hybrid approach that uses coordinates
both from gazetteers and predicted from regression is therefore clearly advantageous for
such datasets.

Figure 5. Distribution of error results showing proportion of results within 5 km, 15 km, etc. for the
approaches RoBERTa-based regression, NER + RoBERTa-based regression, and Semantic Similiar-
ity + RoBERTa-based regression.

Table 3. A comparison between different location name disambiguation techniques for the location
name extraction approach just for those 872 Tweets in which place names could be detected, where
‘NER+regression-based disambiguation’ refers to using the RoBERTa-based regression model for
performing location disambiguation, ‘NER + Nominatim-based disambiguation’ refers to using the
top-ranked location returned by Nominatim for a given place name, ‘NER + Nominatim-based
disambiguation with UK context’ refers to using the the top-ranked location returned by Nominatim
but limiting the search to UK-based locations, and ‘RoBERTa-based Regression’ refers to using only
regression for inferring the coordinates for the Tweets.

Method MedianED MeanED

NER + regression-based disambiguation 1.32 km 39.22 km

NER + Nominatim-based disambiguation 1.85 km 50.27 km

NER + Nominatim-based disambiguation with UK context 0.86 km 39.28 km

RoBERTa-based regression 14.95 km 59.83 km
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Figure 6. Accuracy within 5 km, 15 km, etc. of the actual location for the approaches RoBERTa-based
regression, NER + RoBERTa-based regression, and Semantic Similarity + RoBERTa-based regression
(‘reg.’ stands for regression).

Table 4. Data distribution for the two hybrid approaches, i.e., semantic similarity approach (‘App.’
refers to approach), ‘#Tweets’ refers to number of Tweets.

- #Tweets

Locations Names Extraction
Tweets with detected location names 872

Tweets with no detected location names 13,794

Semantic Similarities
Training instances within region (10 km) 14,308

No training instances within region (10 km) 358

Total number of Tweets 14,666

4. Discussion
Geo-referencing social media data, especially Tweets, presents a unique set of chal-

lenges. These include modelling informal language, limited context, and the limited
presence of explicit place names. Our results highlight several key issues in these re-
spects and demonstrate how different methodological choices impact the effectiveness of
location prediction.

One major unexplored research area is the use of regression models for coordinates
prediction versus cluster, region-based approaches. As shown in Sections 3.2 and 3.3, our
use of a transformer language model-based regression approach, especially when combined
with a location name disambiguation strategy, outperforms four baseline methods, including
a conventional SVR model, a graph convolutional network (GCN), and larger generative
models such as GPT-4o and LLaMA 3. These results suggest that the contextual language
representation of MLM transformer-based regression, particularly using the RoBERTa archi-
tecture, offers significant advantages for predicting Tweet coordinates. Notably, RoBERTa
outperformed BERT, indicating that when domain-specific training data is limited, more
robust pre-trained models are better suited to capture the subtle linguistic cues needed for
geolocation tasks. Moreover, we find that domain adaptation and task-specific fine-tuning,
even on relatively small corpora, can significantly improve performance, confirming the utility
of transfer learning in this context. The domain-adapted RoBERTa model developed in this
study can potentially benefit other Twitter-based geospatial or wildlife monitoring tasks.

Another critical issue is data sparsity, especially in the availability of geo-annotated
training examples. Augmenting training data with additional sources from other social media
platforms helped mitigate this problem. Our approach relates to prior work by [20,65], which
showed the value of using Flickr and Twitter data for geolocating Wikipedia content. A key
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advantage of our method is its simplicity: unlike traditional statistical models, our neural
network-based approach does not require complex pre-processing such as feature vector
normalization. Future work could extend this by using even more diverse and multilingual
data sources to pre-train or fine-tune language models for greater robustness and coverage.

Disambiguation of place names remains a persistent obstacle. Our hybrid strategies,
discussed in Sections 2.4, 2.5, and 3.3, combine semantic similarity and location name extrac-
tion with regression. These techniques address the ambiguity of place names and improve
precision, especially for Tweets where names appear in isolation or contextually ambiguous
forms. The best-performing configuration integrates location name extraction with RoBERTa-
based regression, which yields improved precision in predicting coordinates with distance
errors below 5 km. However, a major limitation of NER/gazetteer-based approaches is their
dependency on the presence of identifiable place names, which are found in practice in only
a small subset of Tweets. In contrast, transformer-based regression methods are capable of
assigning coordinates to all inputs, independent of explicit location mentions.

To further explore this capability, we analysed Tweets where NER failed to detect
location names. Interestingly, the regression model predicted coordinates within 15 km
for 32% of these Tweets and within 55 km for 51%, highlighting its broader applicability.
The spatial distribution analysis in Figure 7 also indicates that the model introduces minimal
geographic bias in its predictions.

Figure 7. A comparison of the geographical distribution of original Tweets coordinates (left) versus
predicted coordinates (right).

Examples of Tweets where NER-based methods fail and where regression succeeds
are given in Table 5. An obvious characteristic of Tweets that cannot be geo-referenced with
NER and gazetteers is illustrated with examples such as: ‘This Herring gull was harassing
returning guillemots to give up their catch. #wildlife. . . ’, ‘@BBCSpringwatch saw a jackdaw this
evening eating seeds at our bird feeders. This is a first for us. Is this normal behaviour?’, and ‘Down
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side to lots of #Clover in your lawn? Bee sting in your foot, that’s what #ouch’ is that there are
no detectable place names. They often include fine-grained locations using generic place
words such as ‘our bird feeders’ and ‘lawn’ that cannot be associated with coordinates
using gazetteer methods. Such descriptions are also a challenge for the language model
methods, but in some cases surprisingly good results can be obtained (as in the second
example in Table 5), which can be attributed to the locations being learnt from similar
language in the training examples. There are other situations in which Tweets include actual
locations that have been misclassified by the NER approaches, for example, because of
adjectives attached to the proper location names, as in ‘Lovely #daffodils @ Sunny Adlington’,
where the NER methods have labelled the phrase ‘Sunny Adlington’ as a person. Another
failure of the NER/gazetteer methods occurs when Tweets are associated with locations
that have not been identified by the pre-trained NER methods and are not present in the
gazetteer, such as “Uttoxeter Quarry” in the Table 5 example ‘@Staffsbirdnews Uttoxeter
Quarry: Common Tern,Common Sand, 4 Green Sand, 4 Snipe, 3 Pintail, 19Wigeon, 4 Pochard and
2 Blue Snow Geese’.

Table 5. Examples of Tweets for which the regression model performed well but the NER/gazetteer
location extraction-based approach failed.

Tweet Dist. Error (km)

13 spoonbills and one with a avocet sitting on ones head @RSPBtitch-
wellmarsh 4.00 km

Morning all. Yes indeed, it’s a marshmallow world again round here.
Deep joy. And pity me poor Robin; Blackbird on their nests! 2.69 km

Great Black Backed Gull spotted on 09-Jul-2013. Sent from Birds of
Britain HD app by @CleverMatrix 2.71 km

@Staffsbirdnews Uttoxeter Quarry: Common Tern, Common Sand,
4 Green Sand, 4 Snipe, 3 Pintail, 19 Wigeon, 4 Pochard and 2 Blue
Snow Geese

3.89 km

What beauty, Buddleja and a Peacock butterfly! #buddleja #buddleia
#butterflybush #peacockbutterfly #beauty #nature #garden #betwsycoed 4.72 km

@Staffsbirdnews Uttoxeter Quarry: Redstart, Black-tailed Godwit,
3 Green Sand, 6 Common Sand, 5 LRP, Willow Tit 1.18 km

Tiny bee type thingy on my pink daisy #beetypething #tinybee
#pinkdaisy #daisy #pink #gardening #gardensofinstagram #lblog-
gers #lbloggersuk #instagarden #growyourown #plants #plantsofin-
stagram #gbloggersuk. . .

3.26 km

discovered today that there’s a #wren pair #nesting in our #compost
bin! #eye_spy_birds @Natures_Voice @GWmag @bbcspringwatch
birdsofinstaqram best_birds_of_world @chesterelements #wren

3.56 km

#wmbirdclub #Belvide 12/10: 68 Golden; 3 Ringed Plover, Ruff,
8 Dunlin, 40 Gadwall, 27 Shoveler, 14 Wigeon, 163 Teal; 55 Pochard. 0.43 km

In future, it is possible to envisage that such false negatives for the NER/gazetteer
method could be reduced by improved training of the NER methods with location-rich
Twitter data, as well as access to richer gazetteer resources. A significant advantage of
the regression-based transformer model is its ability to assign coordinates to such Tweets
(especially those that do not mention gazetteered place names), based on learned trends
from the training set.
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5. Conclusions
This paper has addressed the problem of geo-referencing Twitter data related to

wildlife observation, using only the text message. A main challenge in developing machine
learning methods for geo-referencing social media data is the need for large amounts of
data that have coordinates that can be used in a training dataset. However, many social
media posts such as Twitter/X lack coordinate information, especially when search is
limited to a specific region or topic. We addressed this challenge by proposing a simple
but effective method for augmenting the Twitter training data with a Flickr dataset. We
also used neural network transformer methods for building multivariate regression models
and word representations, which to date have received only limited attention in geo-
referencing social media studies, especially when related to wildlife. In particular, we
adapted the RoBERTa transformer model for the regression task. Results showed that
the RoBERTa model, when fine-tuned to the domain and when augmenting the training
set with diverse social media sources, can be highly beneficial for geo-referencing Tweets.
Finally, we demonstrated that a hybrid approach of using NER methods and a gazetteer
for geocoding when place names are present, supported by the RoBERTa-based regression
for disambiguation, and using only the regression method when place names are absent,
can significantly improve the performance of geo-referencing models. This benefit is most
noticeable when generating the highest accuracy results.

Author Contributions: Conceptualization, Thomas Edwards, Christopher B. Jones, and Padraig
Corcoran; methodology, Thomas Edwards; software, Thomas Edwards; validation, Thomas Edwards,
Christopher B. Jones, and Padraig Corcoran; formal analysis, Thomas Edwards; investigation, Thomas
Edwards; resources, Thomas Edwards; data curation, Thomas Edwards; writing—original draft
preparation, Thomas Edwards; writing—review and editing, Thomas Edwards, Christopher B. Jones,
and Padraig Corcoran; visualization, Thomas Edwards; supervision, Christopher B. Jones and Padraig
Corcoran; project administration, Christopher B. Jones and Padraig Corcoran. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding

Data Availability Statement: The data and code are available at Figshare: https://figshare.com/s/
556f6fe76685a38932b8 (accessed on 13 May 2025).

Acknowledgments: During the preparation of this study, the author(s) used GPT-4o and LLaMA
3 for the purposes of predicting coordinates for Tweets as part of the analysis. The authors have
reviewed and edited the output and take full responsibility for the content of this publication.

Conflicts of Interest: The authors declare no conflicts of interest

Appendix A. Keywords Used for Data Collection
We collected Tweets using search phrases of common and scientific species names

to create a dataset for the invasive species in the UK with occurrences on the NBN data
portal, as well as the 10 most numerous species on NBN, and 10 ten most numerous species
on Flickr, some of which overlap. This collection has been informed by previous research
within the area [66,67]. The keywords are given in Table A1.

https://figshare.com/s/556f6fe76685a38932b8
https://figshare.com/s/556f6fe76685a38932b8


ISPRS Int. J. Geo-Inf. 2025, 14, 321 18 of 21

Table A1. Examples of keywords used to collect Twitter/X dataset.

Scientific Name Common Name

Fagus sylvatica Beech

Gallinago gallinago Snipe

Parus major Great Tit

Pteridium aquilinum Bracken

Cyanistes caeruleus Blue Tit

Hedera helix Ivy

Bellis perennis Daisy

Turdus merula Blackbird

Scirurus carolinensis Grey squirrel

Fringilla coelebs Chaffinch

Passer domesticus House Sparrow

Anas platyrhynchos Mallard

Columba palumbus Woodpigeon

Chloris chloris Greenfinch

Prunella modularis Dunnock

Taraxacum officinale agg. Dandelion

Heracleum mantegazzianum Giant Hogweed

Hyacinthoides non-scripta Bluebell

Branta canadensis Canada Goose

Aix sponsa Wood Duck

Appendix B. Prompts Used for GPT-4o and LLaMA 3 Models
We used the same prompt to geo-reference Tweets for both models. The prompt

was designed based on design principles from OpenAI and Meta, as well as examples
provided by Reynolds and McDonell [68]. We used the same prompt for zero- and few-
shot settings. However, for few-shot settings, we added five randomly selected examples
from the training data.

Prompt used for geo-referencing Tweets

Given the following tweet, provide the location name like ‘Location name:’ (if men-
tioned or inferred), followed by the latitude (‘Latitude:’) and longitude (‘Longitude’)
values each on a separate line. If multiple locations are mentioned, return the coor-
dinates for the most relevant or prominent one. If no explicit location is mentioned,
infer the coordinates based on other clues, such as references to landmarks, events,
or notable geographical details. Prioritize locations within the United Kingdom and
Southern Ireland, if applicable. If the location is not fully clear, provide the best
guess and explain the reasoning behind the uncertainty (using ‘Reason:’ as a last
row of the response). Ensure that a result is returned, even if the confidence in the
coordinates is low.
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